Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Physiol Anim Nutr (Berl) ; 105(4): 621-629, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33560532

RESUMO

The trial was aimed at evaluating probable superiority, if any of nano zinc (NZn) over inorganic zinc (Zn) on immunity, serum minerals and T3 , T4 , and IGF-1 hormone profiles in goats. NZn was synthesized by using 0.45 M aqueous solution of Zn nitrate and 0.9 M aqueous solution of sodium hydroxide (average particle size 74 nm). Twenty-four male goats were grouped into four groups as per their body weight and were supplemented with either a basal diet with concentrate and straw at 50:50 ratio (Negative control, NC) alone or supplemented with 50 mg/kg Zn (Control) from inorganic Zn source, that is ZnO (IZn-50), 50 mg/kg Zn from NZn (NZn-50) or 25 mg/kg Zn from NZn (NZn-25). No change was observed in thyroid hormone status on zero and 90th day of experimental feeding, but NZn supplementation improved (p < 0.05) IGF-1 level on 90th day serum samples. Zn supplementation improved the humoral immunity in all the groups irrespective of the source. Similarly, cell-mediated immunity (CMI) measured by skinfold thickness after injecting Con-A, was also improved in Zn supplemented groups than control at 6, 12 and 48 h of incubation. NZn-50 animals showed highest HI (haemagglutination inhibition) titre as well as skin thickness. The CD 4 + (cluster of differentiation in %) was more (p < 0.05) in Zn supplemented groups. NZn-50 showed higher (p < 0.05) CD 8 + count than NC and similar (p > 0.05) to IZn-50 and NZn-25 groups without affecting (p > 0.05) the ratio of CD 4 + , CD 8 + among the treatment groups. Thus, NZn supplementation at 25 mg/kg had similar immunity and serum T3 , T4 and IGF-1 profiles compared with IZn at 50 mg/kg dose.


Assuntos
Cabras , Zinco , Animais , Suplementos Nutricionais , Fator de Crescimento Insulin-Like I , Masculino , Hormônios Tireóideos
2.
Biol Trace Elem Res ; 190(1): 76-86, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30220070

RESUMO

A study was conducted to validate the effects of nano form of zinc (NZn) on nutrient digestibility, zinc retention, organ and serum zinc profile, and hepatic metallothionein gene expression in Wistar albino rats (WAR). Nano zinc (NZn) was synthesized through chemical method, by using 0.45 M zinc nitrate [Zn(NO3)2.6H2O] and 0.9 M sodium hydroxide (NaOH). The NZn particle in its oxide form was characterized by TEM-EDAX and XRD, and found to be in nano range (below 100 nm. Zinc was supplemented to the Wistar albino rats (WAR) through synthetic semi-purified diet either without Zn, or as inorganic zinc (IZn; 25 mg/kg), or as synthesized NZn (25, 12.5, 6.25, 3.125 or 50 mg/kg DM) for 60 days. The zinc content was observed to be significantly (P < 0.05) higher in liver, bone, kidney, and serum due to NZn supplementation where NZn-50 had highest zinc content and control had the least, without affecting Fe, Mn, and Cu. NZn at 12.5 mg/kg group rats were either comparable or better than IZn at 25 mg/kg in terms of zinc retention, CP digestibility, zinc level in serum, liver, bone, and kidney suggesting its better bioavailability simultaneously also reduced fecal excretion of zinc to the environment. Metallothionein mRNA expression was upregulated in NZn at 25 mg/kg and NZn at 50 mg/kg than IZn at 50 mg/kg. Thus, in WAR, NZn at half of the ICAR recommendation (25 mg/kg DM) is as effective as inorganic zinc at 100% of recommended dose.


Assuntos
Fígado/efeitos dos fármacos , Fígado/metabolismo , Metalotioneína/metabolismo , Minerais/sangue , Minerais/metabolismo , Óxido de Zinco/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/genética , Cobre/sangue , Suplementos Nutricionais , Expressão Gênica/efeitos dos fármacos , Ferro/sangue , Masculino , Metalotioneína/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Hidróxido de Sódio/metabolismo
3.
Vet World ; 8(7): 888-91, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27047170

RESUMO

Nano minerals are widely used in diversified sectors including agriculture, animal, and food systems. Hence, their multiple uses provoke the production of nanomaterials at the laboratory level, which can be achieved through physical, chemical or biological methods. Every method is having its own merits and demerits. But keeping all in mind, chemical methods are more beneficial, as uniform nano-sized particles can be produced, but the use of corrosive chemicals is the main demerits. When it comes to environmental issues, biological methods are better as these are free from corrosive chemicals, but maintaining the culture media is the disadvantage. For animal feeding, chemical methods are mostly followed to produce nano minerals as it is cheap and less time consuming. These nano minerals also showed their significant effects even at lower doses of recommendations than the conventional mineral sources. These nano minerals have significant growth promoting, immuno-modulatory, antibacterial effects than the conventional counterparts. They also alter the rumen fermentation pattern on supplementation in the animal feeds. Apart from these, nano minerals are reported to enhance the reproduction in the livestock and poultry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...